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Optical Double Diffraction and LEED

The phenomenon of double diffraction in the Fraunhofer
case can be assumed to occur also in LEED. Double dif-
fraction spots can cancel in special geometric arrangements.

Bei der Beugung langsamer Elektronen treten
manchmal Zusatzreflexe auf, die durch Doppelbeu-
gung an benachbarten Netzflichen gedeutet werden
konnen, sofern diese durch die Additivitdt der je-
weiligen reziproken Gittervektoren beschrieben wird
(z. B.%*3), Dies ist sicher dann richtig, wenn die
auf das zweite Gitter fallende Welle eben ist. In ¢
wird der experimentelle Nachweis fiir die Giiltigkeit
dieser Additionsregel im Fall optischer Simulation
von LEED erbracht. Die folgende Rechnung zeigt
zundchst, dall dabei noch zusitzliche geometrisch

bedingte Auswahlregeln auftreten konnen, so dal}
Doppelbeugungsreﬂexe nicht unbedingt auftreten
miissen. Als Hauptanliegen wird gezeigt, wie die im
Fraunhoferfall bestitigte Additionsregel qualitativ
(LEED)

auf den Fresnelfall
kann.
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Abb. 1. Schematischer Aufbau der Doppelbeugungs-
simulation.

Abbildung 1 zeigt die experimentelle Simulations-
anordnung, wobei jedoch der relative Gitterabstand
d[D sehr viel grifer als bei LEED ist. Die Integra-
tion der Kirchhoffschen Beugungsformel iiber das
Gitter 4, gibt die Amplitude in der (z,y)-Ebene zu

W (a,y) ~ [ A As(E) (= cos(n 7))

“exp [ik (rf I;;y L )] d& dy’ dsdy,
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so dab} sich das verbleibende Integral auf eine Sum-
me von Integralen um diese Punkte reduziert. o kann
um diese Stellen herum linearisiert werden und es
ergeben sich fiir z. B.
My, Ny
Ay (&, 1) = 2 c
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Dies ist die erwartete Additionsregel fiir die rezipro-
ken Gittervektoren. Die Summe, die sich bei symme-
trischer Mitnahme hoherer Beugungsordnungen wie-
der auf den gewohnten Sinusausdruck reduziert, er-
gibt zusiitzliche Ausléschungen, bzw. beschreibt eine
starke Abhingigkeit der Amplitude von d, die in *
beobachtet wurde. Das dort gemessene charakteri-
stisch grofie Intensititsverhiltnis zwischen Einfach-
und Doppelbeugungsreflexen, 1dt sich durch Be-
riicksichtigung der endlichen Spaltbreite, die sich bei
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Doppelbeugung doppelt auswirkt, errechnen. Die zu-
sitzliche Selektivitit ist dann wegen der Schwi-
chung héherer Beugungsordnungen weniger ausge-
pragt.

Im Fresnel-Fall (LEED) ist eine rechnerische Be-
stitigung der Additionsregel analytisch schwer
durchfiihrbar. Die Simulation als ,rechter Grenz-
fall* (d 2 (&', %) max) von LEED ist héchstens ein

erster Hinweis. Im ,.linken Grenzfall®
(d < }-a d < (5’9 ?J")max) 3

der physikalisch von dem koinzidierender Gitter
nicht unterscheidbar ist, ergibt sich (ohne Beschrin-
kung der Allgemeinheit eindimensional)

W () ~ [ A4,(5)As(§) exp[ —i k(x §/D)]dE,

d. h. P (x) ist die Fourier-Transformation von
A, A5, die sich durch Anwendung des Faltungssat-
zes fiir z. B.

Ay (5) = za(f—ngl), 4,(5) = %5(5—"&93)
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Damit bestatigt sich also auch im . linken Grenzfall®
der Fresnel-Beugung die Additionsregel fiir die rezi-
proken Gittervektoren. Die Fresnel-Beugung bei
LEED kann somit als Zwischenstadium zweier der
Additionsregel gehorchenden Grenzfille betrachtet
werden. wodurch sich ein qualitatives Argument fiir
die Giiltigkeit auch fiir den LEED-Fall ergibt.

Im Gegensatz zur Doppelbeugung an nachfolgen-
den Gittern unterscheiden sich bei der Einfachbeu-
gung an koinzidierenden Gittern die Intensititen von
primiren und Zusatzreflexen nicht. Dennoch ist eine
Unterscheidung zwischen beiden Fillen bei LEED
aufgrund der hier viel komplizierteren Intensitits-
verhiltnisse im Einzelfall nur schwer moglich® 3.
Im Durchschnitt miiiten jedoch Doppelbeugungs-
reflexe schwacher auftreten als die zugehéorigen Ein-
fachbeugungsreflexe. Eine vergleichende Zusammen-
stellung der Intensititsverhiltnisse von bisher als
Doppelbeugung gedeuteten Reflexen kénnte in die-
sem Sinne daher weiterhelfen.
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